Tartan Reference Manual -18-

6. Definitions and Declarations

<de!-dec)> uw <declaration> | <mod def> | <rouline def> | <type def> | <generic def> | <gmpty>
| imports <qual id> * | exports <qual id> * | excoplion <id> * | dissble <id> *
| preg <proc cali>,* ;* gorp

<declaration> := <binding> { <id> * { : <type> |® { 1 <expr> |® | * | <binding> { <id> * : <type neme> } *
<mod def> uw module <id> <mod text>
<mod text> u= ; <code body> | <remote inst>

ne

proe <id> <proc text> | fune <id> <func text> | precess <id> <proc text>
| tune * [<unop> | <binop> | <tunc text> !

<routine def>

<func text> uw (<formais>) <id> : <type> ; <biock> | <remote inst>

<proc text> uw (<formels>)3 <block> | <remote inst>

<type def> == lype <type name> { (<formais>) }® s <type>

<generic def> :e generic module <id> [<formais>] <mod text> | generic fune <id> [<formais>] <tunc text>

| generic proe <id> [<formais>] <proc text> | generic precess <id> [<formais>] <proc text>
is <qual id> [<actusis>] | is assumed (<id>)

{ <tinding> <> * 1 <type name> | *

<empty> | ver | const | monifest | result

<remote inst>
<formals>
<bjndin'>

i

6.1. Declarstions
Some examples are:

var =x: Real

conet y:e true

ver Huel, Hue2. Hue3: Calor

ver Tint :« enum(saffron, puce, fuchsia, ochrel
ver V: erray(S..7) of Int

ver . Ml:Mark(S), M2:Merk(7)

manifest Pl: Real :e 3.14

The syntax for declarations allows three kinds of sbbrevistions. If the initislization expression
appears, the type of the veriable is evident from the <expr> snd the “:<type>" may be omitted In
addition, lists of <id>s with the same types or bindings mey be condensed. These abbreviations sre
illustrated by the following five declarations, all of which have the same effect:

ver x,y te @

ver x,ysint 1= @

ver x i1« @, y :t= @

ver nzlnt te @, yilnt 1« 8
ver x31lnt te @; ver ytint ta @

Elaboration of a declarstion csuses instantistion of an object which is the verisble. Esch verisble
has 8 type and & vsive. The type is determined when it is instantiated, but the velus mey be
by further elaboration of the program. A varisble may be restricted to be
entry) or manifest (velue fixed during transiation).

Elaborstion of & declaration proceeds as follows:

- Eveluste the <expr>, if present. l!MthmweMd-dﬂm It must
be manifest in manifest declerations.

= [t the <binding> is manifest, bind the velus of the <expr> to the identifier(s).
- It the <binding> is const or ver, elsborate sny <actusi>s in the <type> and instantiste & new

veriable with the indicated type and attributes for each identifier. If there was an <expr>,
assign its value to each of the new verisbles.

When the type is dynamic, the decleration supplies the <type neme> only (no sttributes). In this case,
only the pointer is allocated st block entry; the aitribules sre supplied when the dynemic type is
actusily (dynamicaily) silocsted

Tartan Reference Manual -16-

6.2. Modules
An example is:

module CounterQef;
begin
exports Counter, Reset, Incr, Value;
type Counter = [nt:
proc Reset (result C:Counter); begin C := 8 end;
proc [ncr(ver C:Counter); begin C 1= C + | end:
fune Yalue(const C:Counter)x:Counter; begin x :» C end |
ond : f

The elaboration of a module takes place during the elaboration of declarations for the block in
which the module is defined This elaboration consists of elaborsting the declarstions of the module in
lexical order, then elaborating the statements of the module.

A module or routine inherits identifiers for definitions (modules, routines, exceptions, and types) from
its enciosing scope. It may explicitly import identifiers of objects from that scope, provided the
objects have global extent. A module, but not a routine, may export definition and object identifiers to
its enclosing scope. Types, named routines, field accessars for records, snd varisbles are exported by
including their names in the exports list of the module. The right to apply infix operators,
constructors, subscripts, “.all", or the cresie command for a type T are exported by including the |
special names Tlinfix, Tconstr, T'subscr, Tall, and T'creale, respectively, in the exports list. Litersis
of enumerated types are exported sutomatically if the types are exported

6.3. Routines | 3
Some examples are:

proc Fivar x:lnt); begin x :e - x; ond

proec G is GenG (S)

tune 1aNil (x:0ynT)y:boolesn; begin y t= (x « nil) end
fune “+° (a,bigorplc:gorps

begin

imports Bias:

C te gorp’ (a.leftsb. leftsBias, a.rightsb.rightsBias)
end

A routine is a closed scope whose body is a block. Thus its body controls extent for local
declarations, but does not inherit identifiers for (non-manifest) objects or labels. The <formals> list
declares the identifiers for parameters. |

A routine may be a function (func), which returns a vaiue and has no visible side effects; it may be
a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a
process, which is a potentisily-parallel procedure. Specisl type-specific routines are described in
Appendix .2

Routine names may be averloaded by binding the same identifier to seversl definitions with different
numbers or types of parameters. The functions for which specisl infix notation is provided are
obvious candidates for overicading.

It a <binding> in a routine header is omitted, it is sssumed lo be const The result binding may be / |
used only in procedures. No duplication of identifiers within the <formals> list is permitted, and i
parameter names may not conflict with declarations or imports in the routine bedy. ; |
6.4. Exceptions

Some exsmples are:

enception TooBig, TooSmall, Late, Singuiar |
diseble TooBig, TooSwal! |

Tartan Reference Manusl -17-

The scope of an exception name is the block in which it is declared A disable declaration in an
inner block suppresses detection of the exceptions it names. A handler clause associates recovery
code with a statement that may generate an excaption (see section 4.7).

The disable declaration permits exceplions to be individuslly suppressed within a given scope.
Should an exceplion occur when its detection is suppressed, the consequences are not defined An
exception must not be signalled or redeciared in a scope in which it is suppressed. Note that
suppression of an exceplion is not an assertion that the condition that gives rise to the exception will
not aceur.

Standard excaptions will be deciared in the global extent

§.5. Type Definitions
Some examples sre:

type Counter « [nt
type Matrix(niint) « srray(l..n.1..n) of Resl

A user may introduce 8 new type into his program with 8 lype definitionn The type definition itself
merely introduces the <type name> and defines the representstion of the type. Operations are
introduced by writing routines whose formsl parameters are of the newly-defined type. Scope
boundaries, particularly module boundaries, play no role in the definition of the type. There is, as a
consequence, na notion of the complete set of operations on 8 type.

A type definition may be paramelerized. The bindings in the formal psrameter list must be const or
manifest. If a <binding> is omitted, it will be assumed to be consl. The names of the formal parameters
of the type sre available throughout the elasboration of the program as constants, called sttributes.
They are accessed by tresting the <var ident> as a record and the type attribute as a field.
Attributes for primitive types are given es pert of the lype definitions.

Within the scope in which the lype is defined, the qualifier Rep mey be used to indicate that the
object nemed by the identifier Rep qualifies is to be trested ss if it hed the underlying type. This
allows operastions on the new type to be written using operations on ils representstion When no
ambiguily arises, the Rep qualification mey be omitled

6.6. Generic Definitions
Some examples are:

goneric proc Reset (Tt typel (var x:T): begin x to x"min ond
proec ResetColor is Reset(Calor)

proc ResetX is Reset (Sample)

module Stack is asssumed(StackOef)

goneric module Ringlef(K: Intls

begin
exports Ring, Next;
type Ring « fined(1,0,8,K-1)¢
tune Next (RiRing)IN:fined(1,8,8,K-1); bogin N := mod(Rs] X); end
end
module RS is RingDe! (S)
module R is RingDet (9]

A generic definition is syntactically like the corresponding specific definition except that it is
prefixed by the word generic end it mey Nave s set of generic perameters (enclosed in squere
brackets) sfter the definition neme. For generic definitions, type is scceplable ss 8 formel <type name>.

The actual perameters supplied in an instentistion of & generic definition masy be sny defined
identifiers, including those for verisbles, functions, types, or modules, or any expression. When the
generic definition is instentisted, the text of the sctusi perameters repleces the identifiers that
represent the formal persmeters. The substitution is done on @ lexical, rather then a strictly textual,
besis. That is, the identifiers in the generic definition sre renamed ss necessery to avoid conflicts
with the identifiers in the ectusl perameters.

Tartan Reference Manual -18-

Both generic definitions and remotely-defined modules or routines may be incorporated in a program
as remote instances. A remote instance may be an instantiation of a generic definition or a reference
to a definition given elsewhere.

A module or routine that is used by the program but whose definition is given elsewhere (e.g, in a
library) is incorporated by writing is assumed(<id>) as the body of a3 module or routine definition. The
<id> is used by a pragmat to locate the remote definition

A generic definition is instantiated by referring to it as the body of a module or routine definition.
The effect of the instantiation is as if the generic definition were lexically substituted in place of the
reference to it. That is, the body of the module or routine being defined becomes a copy of the
generic definition

An instantiation of a generic ‘definition may be used as the body of a specific module or routine. The
ususl restrictions on defining new identifiers apply to the module or routine being defined in terms of a
generic.

Generic type definitions arise from generic modules. They are instantisted when the module is
instantiated. Thereaiter, they may be used in declarations or definitions.

if the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correponding types and be syntactically suitable for substitution.

If a generic definition is instantisted more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

6.7. Translstion [ssues
An example is:

prog Optimize(space): Listing(Off) gerp

A program is a <block>. The extent defined by the outer block of the program is the global extent.

The transistor may be guided by <pragmat>s. Prasgmats have the same syntax as procedure calls.
The set of pragmet names and the interpretations of the arguments are determined by each transiator.
Transiators will ignore pragmats whose names they do not recognize.

A program may be broken into separately defined segments. This decomposition must take place in
the giobal extent. The units of separate definition are modules and routines. The definition

module O is assumed(])

in a segment has the effect of making the semsntics of the segment the same as if the (separately
defined) text of Q had been substihi’ed for “is sssumed(l)”. The identifier | refers to a file, library, or
other facility for storing separately defined segments. The relation between the identifier | and that
storage facility may be established by 8 pragmat.

It is a matter of optimization whether the seperate definition is included as text or separately
translated and linked in. In order to perform independent transiation of a seperstely defined component,
it is necessary to embed the module or routine being transiated in an environment that supplies
definitions for all the names it inherits or imports. This environment must form a complete program.
It is sssumed that the transistion system provides commands for selecting which components of such a
transiation to save and for determining where and in whet form they sre to be saved.

Tartan Reference Manual -19-

I. Standard Definitions

L1. System-Dependent Characteristics

The trensiatc. for each system is assumed to provide a module in the global extent that defines
appropriate system constants. Such constants are assumed at various points in the language definition;
these and certain others are summerized here in the form of a skeleton module.

module Sys:

begin

exports . . . ! exports all definitions below
type [nt « fixed(. . .) * ! sppropriste to the machine

! Note Int.Min and Int.Max give range

type Reasl = flost(. . .) ! asppropriate to the machine
! Attributes give renge, precision, scale

const . . . ! constants that descibe properties of the
! object machine
proe . . . ! procedures for accessing facilities of the
! operating and file systess
exceptions . . . ! Syetem-defined exceptions such as Assertion, BedAssign....
ond .

1.2. Properties of Types

All types have assignment operators and routines for conversion to sppropriste other types. In
particular, the scalar types have routines for converting to and from cherscter strings. ANl nonscsler
types have constructors. The sections below skelch some important properties of the built-in types.

1.2.1. Fixed
Literals: digit strings
Attributes: Min, Max, Precision, Scale

Infix operations: Arithmetic and relationel
Specisl routines: rounding, truncation

1.2.2. Floet . ¢
Literals: digit strings with decimal point
Attributes: Min, Max, Radix, Precison, MinExp, MaxExp

Infix operstions: Arithmetic and relstionsl
Specisl routines: rounding, truncation

1.2.3. Enumerations

All enumerations sre ordered The litersls sre sssumed to appeer in the declerstion in increasing
order.

Literals: As given in definition
Attributes: Min, Max

Infix operstions: Relational

Specisl routines: suce, pred

Tartan Reference Manual _ -20-

1.2.4. 8odlean
Liter. - true, faise
Attributes: none
Infix operations: logical
Special routines: none

1.2.5. Cheracters
Literals: Quoted characters
Attributes: Min, Max

Infix operations: none
Special routines: as for enumerstions

1.2.6. Latches

A latch is a simple spinliock for mutual exciusion If the lalch is open, it is avasilable for siezure: if it
is closed, a Lock command will wait on it
Literals: open, closed
Attributes: none
Infix operations: none
Special routines: Lock, IfLock, Unlock

1.2.7. Arrays

Literais: none

Attributes: Range, EitType

Infix operstions: none

Specisl operations: subscript, subarray, catenstion, upper bound, lower bound

1.2.8. Sets
“Sets” are booiesn vectors on which some additional operations sre defined
Literals: emptly
Attributes: EitType, MaxSize
Infix operations: logical

Specisl operations: subscript
1.2.9. Dynsmic Types

Literals: nil

Alttributes: The nemed varisble does not itseif have atiributes, but the dynemic
varisble that it references may.

Infix operations: none '

Specisl operations: .all denoles whole velus of dynemic object, as distinguished from
the reference. A dynemic constructor sllocates 8 new dymamic object.

Specisl routines: none

1.2.10. Records

Literals: none

Attributes: individuslly defined with record type
Infix operstions: none

Specisl operations: field selection, constructors

Specisl routines: nons

st bl

et WDRPCARPP P

i
!
!
{
;

1 Tartan Reference Manual
1.2.11. Varianls
Literals: none
Attributes: individuaily defined with variant type

Infix operations: none
Special operations: veariant must be designated to reference contents
Special routines: none

1.2.12. Strings
Literals: Quoted strings
1 i Attributes: Length

Infix operations: none
Special operations: subscript, substring, catenation

[.2.13. Activations

Literals: mint
Attributes: none
Infix operations: none

Special operations: creste
Special routines: To change state: Activate(A), Suspend(A), UnlockAndSuspend(A,L),
UnlockAndActivate(A,L), LockAndSuspend(A,L), LockAndActivate(A L),
Terminate(A)
To query state: IsMint(A), IsAct(A), IsSusp(A), IsTerm(A)
To obtain actrame: NameQf(A), Me()
To sent exception: Notify(A)
Other: Priority(A), SetPriority(A), Time(A)
where A is an aclivation or sctneme and L is a latch

Assignment causes the BadAssign exception if either the vaiue or the varisble to which it is being
assigned is in a state other than mint

1.2.14. Actnemes

Literals: mint
Attributes: none
Infix operations: none
Specisl operstions: none
Special routines: Same

1.2.18. Files
A minimal input-output facility will be provided

L.3. Alphabets

The following context-free substitutions reduce the siphebet used in this report to the stenderd
64-charscter ASCIl subset. Note thet some identifiers sre pre-empled ss 8 result

Substitute the ASCII string:
upper case A.2

vaRgoys

Tartan Reference Manual -22-

II. Collected Syntax

<const> uw <digit>* { . <digit>* }® | true | faise | nil | closed | open | mint | empty
| <constructor> | <id> | <qual id> ' <const> | <type> ' <const> | <expr>

<constructor> :w (<expr>?®) | ({ <option> <> <expr> } *)| * <char>* *
<var id> uw <qual id> | <var id> (<actuals>) | <var id> . <id> | <var id> (<range>) | Rep’ <id>
<range> uw <gupr> . . <expr> | <type>
<option> uw { <const> | <range> } *
<qual id> um { <id> ')® <id>
<id> ww <igtter> <letter or _ or digil>®
<expr> uw <unop>® <ver id> | <unop>® <const> | <unop>® <func call>
| cunop>® (<expr>) | (<expr>) . <id> | <expr> <binop> <expr>
<unop> uw e|e
<binop> e | /el CIgI>12]n|#|A|cond|v|cor|t
<func call> uw <qual id> (<sctusis>)
: <actuais> E mao.‘
3 <stmt> uw <proc call> | <id> : <stmt> | <emply> | <block>
i | <var id> = <exor>
| if <expr> then <stmt>.® { olif <exor> then <stmt>,* |* { else <stmt>* |® f
| case <expe> { on <oplion> <> <stmt>.® }* eese
|m«m>a<nm>'u|nr«bhm.>a<.m, od
| goto <id> .
| signel <qual id> | resignal | sssert <expr>
| <stmt> { { on <id> * «> <stmt>* }* }
| create <ver id> (<actusis>)
<proc call> ww <qual id> (<actuals>)
<block> uw <code body>
<code body> == begin (<def-dect>; }* <stmt>® ond
<type> - M«muwnm«mmdvnmumlwwdcmi

| enum({ <id> * 1IM('<chv>'} 11 <expr> .. <axpr>

sal(<actusis>) | string(<actuais>)

(<range>*) of <type> | record [<decteration> *]
'dndanﬂo»((uwooﬂov =) <type> }*]

ic <type> | activation of <quel id> | sctneme

name> | (<actusis>) |®
IM!MHMIM'MOHQHM

<id>*] | enum{ { ° <char>“ }
[W”m”]d«mm’ln&d[(w‘:ﬂynm’)“
(dynnm’(mmtbn’-)ﬂmm»}‘f

;3

i

{;

<type neme> =

*

"ﬁi

dynamic <type m’lmhtwwllm
<quel id> { (<quel id>*] |*
<def-deci> = <declaration> | <mod def> | <routine def> | <type def> | <generic def> | <empty>
|MWO‘IMMO‘IMQ”I“@’
! | preg <proc caii>.* ;* gorp
<declaration> :e <binding> { <id>* { s <type> | [= <expr> |® } ¢ | <binding> { 4d> * 1 <type neme>] *
<mod def> ze module <id> <mod text>
<mod text> uw 3 <code body> | <remote insl>
<routine def> z= proe <id> <proc text> | fune <id> <func text> | process <id> <proc lext>
| fune © { <unop> | <binop> | * <fune text>
<func text> uzw (<formais>) <id> 3 <type> ; <biock> | <remote inst>
<proc text> e (<formsis>); <block> | <remote inst>
<type def> ww type <type neme> { (<tormais>) |® ¢ <type>
<generic def> := generic medule <id> [<formals>] <mod text> | generic fune <id> [<formais>] <func text>

| generie proe <id> [<formais>] <proc text> | generic precess <id> [<formeis>) <proc text>
is <qual id> [<actusis>] | is sssumed (<icd>)

{ <binding> <> * 1 <type name> | *

<empty> | ver | const | menifest | result

<remote inst>
<formais>
<binding>

i

’ - “SECURITY CLASHISICATIZ g ok Toulh 108 o (Whan (1ars tEiare i -

£
: - READ INST X
REPORTDUTUMENTATION PAGE HEROLE roa e
. REPORT NUMBER - 2. COVY ACCESSION NQ| 3. RECIPIENT'S CATALOG 'NUMBER
AFOSR-TR- 78-1521 7
4. TITUE (and Subtitie) ; A S. TYPE OF REPORT & PERIOD COVERED 1
=l)
TARTAN. LANGUAGE DESIGN FOR THE IRONMAN REQUIRE- Interim
- MENT: REFERENCE MANUAL 6. PERFORMING ORG. REPORT NUMBER
. CMU~-CS-78-133 —
7. AUTHOR(®) : 8. CONTRACT OR GRANT NUMBER(S)
Mary Shaw, Paul Hilfinger, Wm. Wulf . F44620‘73_C-0074 —
9. PERFORMING ORGANIZATION NAME AND ACORESS 10. PROGR.AM E‘{.EMENYT PROJECT, TASK
S Carnegie-Mellon University : 5 i R 5 o
2 Department of Computer “Sciance e B At 61101E L S e }
. Pittsburgh, PA 15213 ez, © A02466/7 . v
4 1. CONTROLLING OFFICE NAME AND ADDRESS -| 12. REPORT DATE >
Defense Advanced Research Projects Agency) : //'.
- June 1978
o : 1400 Wilson Blvd. : 13. NUMBER OF PAGES :
. "Arlington, VA 22209 22
3 P Y& MONITORING AGENCY NAME & ADDRESS{I! ditterent lrom Controlling Oftice) | 1. SECURITY CLASS. (of thie report)
" . Air Force Offlce of Sc1ent1fic Research (NM) : UNCLASSIFIED 1
Bolling AFB pe’. - 20332 . : X - [TSe pE L ASSIFICATION/SOWNGRADING - g

16. DISTRIBUTION STATEMENT (of th!s Report)

-} . Approved fof public releése; distribution unlimiteqfv - _'~ _'{- =

17. OISTRIBUTION STATEMENT (of the abetract entered in Block 20, I dillerent lrom Report)

.

18. SUPPLEMENTARY NOTES . o L.

19. KEY WORDS (Continue on reverse aide If necessary and Identily by block number)

\\\ :
20. ABS?R)ﬂ—;CMlMuo on reverse side Il necessary and (dentily by biock numbor)
artan is an experiment in language design. The goal was to determine i
whether a “81mple“1anguage could meet substantially all of the ironman. i -
requzrement for a commop high-order programming language. 3 e

. was yndo-ta\ e 1y wes 4
Ue—anda;toek thls expef1ment,because believed thax all the designs
done in the firsf phase of th DOD effogzsnere too large and too complef

We—aau that complex1ty,as a serious failuré of the designs; excess complexit

DD ':2:“" 1473 €O:TION OF 1 HOV 6315 ODSOLETE UNCLASSIFIED

S/N 0102:014-6601 . SECURITY CLASSIFICATION OF THIS FAGE (When Dete Entered)

T —TT—. v T

S
UNCLASSIFIED . : | iR
)
0"{\
20. Abstract continued.
in a programming language can interfere with 1ts_#sq,kexen to the extent that any
beneficial properties are of little consequence. §E'wanted to find out whether the
requirements inherently lead to such complexity or Whether a substantially simpléfq‘"
language would sufflce.

“>Three ground rules drove the experiment. First, no more than two months —- April 1 to
May 31 -- would be devoted to the project. Seccnd, the language would meet all the
[ronman requirements except for a few points at which it would anticipate Steelman
requirements. Further, the language would contain no extra features unless they resulted in a
simpler language. Third, simplicity would be the overriding objective.

e

The resulting language, Tartan, is based on all available information, including the design:
lalready produced. The language definition is presented here; a companios report provides an
overview of the language, a number of examples, and more expository explanations of some of
the language features.

We believe that Tartan is a substantial improvement over the earlier designs, particularly |
its simplicity. There is, of course, no objective measure of simplicity, but the syntax, the
size of the definition, and the number of concepts required are all smaller in Tartan.

Moreover, Tartan substantially meets all cf the Ironman requirement. (The exceptions lie in
,a few places where we anticipated Steelman requirements and where details are still missing
Ifrom this report.) Thus, we believe that a simple language can meet the ironman requirement.

artan is an existence proof of that.
‘p 1+ be

Akrmust1empha=1ze agair: that this effort is an experiment, not an attempt to compete with
DOD contractors. Tartan is,however, an open challenge to the Phase II contractors: The
language can be at least this simple! Can?;gutdo better?

PP

e NS S ST A PP G i o

